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(3) Thermal aspects

In addition to the use of the pressure-dependence of the elastic constants to augment other
investigations of cohesion in solids, the data are directly applicable to the study of certain aspects
of anharmonicity of lattice vibrations. Consider the acoustic wave velocity and its pressure

dependence in terms of the dispersion curves for lattice vibrations of a solid as revealed in the
plot of the frequency vs. | k | where k is the wave vector for some direction of propagation in the
crystal (see Fig. 8). The initial slope of such a curve is the velocity of an acoustic wave of frequency
low compared to the cut-off frequency Vmax- Typical cut-off frequencies are ~ 1013 cycles per
second so that our 10-mc search wave is very near the origin on the scale of Fig. 8 and information
derivable from it will only be applicable over the region of the v vs. l k | curve non-dispersive at
all pressures considered. Consider now the behaviour of a normal mode i lying in the non-
dispersive region (see Fig. 8), i.e. a plane standing-wave having a fixed number of nodes between
two atom sites a distance L apart and a frequency vi. As the crystal volume is changed by
application of pressure, the mode frequency will change for two reasons: (1) the sound velocity,
hence the slope of the curve, will change, and (2) the value of | k | will change because the
reference lattice sites are compressed with the crystal. Analytically one can express this depen-
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Fig. 8. Acoustic lattice vibration dispersion curves for a longitudinal
mode (LA) and a transverse mode (TA), showing change of
the transverse acoustic (TA) curve caused by an applied pressure

P,, and the shift in frequency of the i’th normal mode
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to type of wave, k; is the reciprocal of the wavelength of the mode under consideration,
v; = (Ci/p)t where C; is an elastic stiffness appropriate to the wave type, p the crystal density, and

dlnCi BdC. . dlnki 1 dll’lp_ )
finally dmv = —G.dF Geometrically V=% dnv_ —1. Performing the

necessary derivatives and combining terms yields yi = — % . %i—zg' i an equation resembling
the familiar expression*® due to Slater,’ but with C; replaced by Br, the bulk modulus, and derived
1 dinBy 1
2°dlnV 6
Slater y depends sensitively on independence of Poisson ratios on volume. If one has only a set
of lattice vibrational modes y; contributing appreciably to the heat capacity of the crystal at the
temperature under consideration, i.e. the electronic or other contributions may be neglected, a
good approximation in insulators and semiconductors, one can, following Slater,? or Peierls®®
assume that the free energy of the crystal can be written:
F= Uy V) + kTIn Zy, where U,(V) is the internal energy of the crystal at absolute zero,

under somewhat different restrictions: ys = Note that applicability of the

* Slater’s expression ys = ay/a,® — 2/3 may be shown to be identical to this expression. Consider a, and a, defined
by AV[Vo=aP + a,P?, a form in which many of Bridgman’s experimental results are stated. Then by solving
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for P and evaluating Bt = — VAap )T and Ay with care to differentiate Br(V) = — V\zp)ms
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not Br(V) = Vo (ﬁ, T (3.12 -3 and (— 1/2 AV 1/6 ) are seen to be equivalent.
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and is assumed to include the zero point energy. U, is assumed to have no explicit temperature
dependence. Z,; is the quantum mechanical sum over states of the lattice vibrational energies.
By elementary statistical mechanics, it can be shown that Griineisen’s gamma, defined by ygr =
aBrV]|C, (where o is the volume coefficient of thermal expansion, Br the bulk modulus and ¥V and

; el Gy Ci i
C, the volume and heat capacity per mole), is given in terms of the i bY ygr = 22 C', _y

is the Einstein heat capacity of the i’th normal mode at the temperature under consideration and
the summation is made over all modes. At temperatures 7' > /1 vy, /k, all modes will have heat
capacity k and yg, = y, the average of y; over all modes. In the limit of very low temperatures
on the other hand, only the low-frequency acoustic modes will contribute to the heat capacity,
the least stiff mode types being the most important contributors. In terms of the dispersion
curves shown in Fig. 8, it is seen that if the occupation is cut off at y — kT}/h, then for the lower
stiffness modes (lower slope of v vs. k), a larger number of states will be contributing to the heat
capacity, hence the y; of these states will contribute relatively more heavily to yg,. Experimen-
tally (see Table V), it is most commonly observed that the lower stiffness modes have smaller Yis
hence yg, should decrease at low temperatures. This has been considered by Sheard5! for a
number of materials, and since one can show?? that if the low-temperature limit of y be y,, then
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Vet~ ﬁ’ - Then it is possibleverysimply to use deLaunay’s tables52 for @ (Cu1, Ci2, Cuy, p)

, where C,;

together with values of the C’s and d C/dP’s in order to evaluate the Yo, SOMetimes with surprising
results,53 as in the case of germanium and silicon54 indicated in Fig. 9. Of course, one expects
this value to be a valid one only in the case of materials in which one can assume negligible
contribution of electronic heat capacity, i.e. in the case of non-metals. The generalisations of

mode type, e.g. transverse acoustic, is the same in the dispersive region as that for the low-fre-
quency modes. This involves averaging of three y, (one longitudinal, two transverse) over all
directions in the crystal. Some values of y are shown in Table V comparing YGr> Vs> and y derived
from shear and longitudinal acoustic measurements. Agreement of y with Yar is excellent in
most cases, indicating that probably the gammas for modes in the dispersive region do not differ
widely from those measured in the low frequency part of the lattice vibrational spectrum. A
spectacular exception to the latter is provided by the temperature dependence of y, in the case
of the diamond-like structures, e.g. Ge, Si, InSb, as shown in Fig. 9. In these a very pronounced
dip in yg, appears at about a tenth of the Debye temperature. The interpretation56 of these
negative anomalies is that the dispersive part of the spectrum of the transverse acoustic modes

Table V
dIn v g :
Yi = = {in pJor various long wavelength acoustic mode types

Values of the elastic constants appropriate to these modes are given in units 1012 dyne cm—2, Comparison is made
between the average y, for these simple modes, the Slater y and the Griineisen y, yg; = @Bt V]Cy, showing the better
agreement between yg, and ¥s- v for NaCl and KCl are taken from Sheard®! and represent an average of y; over
all directions of propagation. @ is the Debye temperature.

aBTV]C, Slater

Crystal C'y Cus C’ Y'u Yaa ¥ ')-’ = YGr Y Yo 70

Na 011 042 00058 136 1-06 106 116 116 15 19

Cu 225 075 023 2:30 1-92 1497 200 196 255 180 09

Ag 1460 046 0-15 269 238 196 234 240 285 13

Au 230 042 015 300 3.38 231 290 290 293 18

Al 119 028 023 243 280 236 253 227 231 290 08
2.57H

Ge 156 067 040 127 0-58 017 072 ~073 21 049 ~gs

Si 211 079  0-50 135 03301 1ID03 G0 045 25 0125 oI q

SiO, fused =240 ~-2.08 ~—208 —219 ' ~0.00

NaCl 0486 0128 0184 1.9 014 289 160S 160 152 123

KCI 0307 0063 0165  1-81  —0.§7 303 157S 148 126 0.53

RbI 0171 0028 0112  — TP

S taken from Sheard®! and H average by Houston’s method




